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Abstract 

Simulating a computer run can be an excellent method for identifying 
performance bottlenecks and is especially valuable when discussing systems that 
do not yet exist. Traditional simulations collect a program trace and then have a 
simulator execute some subset of the trace one instruction at a time. 
Unfortunately, all of the standard variants of this technique are far too slow to 
use on jobs for high-end High Performance Computers and Supercomputers. We 
have developed an approach based primarily on an analysis of the memory 
access patterns and the number of floating point operations being executed that 
will estimate the performance of any run in a small fixed amount of time (e.g., a 
few seconds or less). Experience has shown that the results are nearly always 
within a factor of 2 of the measured results and frequently are within 15% or 
better of the measured results. 
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1. Introduction 

Simulating a computer run can be an excellent method for identifying 
performance bottlenecks. This can be especially valuable when discussing 
systems that do not yet exist. As such, it can augment benchmarking efforts by 
helping to explain, or even predict, results as opposed to simply reporting them. 
Unfortunately, traditional techniques in this field have suffered from three 
constraints: 

(1) Describing a modern processor architecture with sufficient fidelity to 
ascertain the validity of the results is difficult. 

(2) ‘The simulations are so expensive to run that many jobs were simply 
considered to be prohibitively expensive to simulate. This can be an 
especially serious problem in the areas of high-end High Performance 
Computers and Supercomputers. 

(3) Even when it was practical to run a simulation, it was frequently 
impractical to run it multiple times to quantify the benefits of various 
approaches to code tuning. 

An example of this can be found in a recent posting to the comp.arch news group 
by a quote from Christopher Brian Colohan, a graduate student at Carnegie 
Mellon University: 

I am currently working on a project which involves detailed 
processor simulation of the SPECInt2000 benchmarks. We are 
encountering the usual problem with simulations: they are taking 
too long, even when we use the provided “test” input. (The test 
input for bzip2 takes 41 seconds to run on our SGI Origin machine 
-- simulating more than a second or so of real CPU time on our 
simulator gets kind of painful. . .>. 

In response to this posting, John Mashey of SGI responded: 

I think people have tried to achieve this effect by taking slices of 
SPEC and other benchmarks in order to get, for example, 
reference streams to analyze alternate designs for memory 
hierarchies (i.e., this is different from changing the input). For 
example, for some codes, the performance on a few iterations 
would model the entire computation but, of course, this doesn’t 
work for others [l]. 

Note: Definitions for boldface text can be found in the Glossary. 



In a similar vein, Naraig Manjikian [2] has stated that when using the 
SimpleScalar tool set on a 333-MHz Sun Ultra/l0 workstation, the simulation 
rate was approximately 300,000 instructions/second (compared to a peak rate of 
over 1 billion instructions/second when executing code directly on the 
hardware). 

Considering the BT, CG, LU, and SP NAS (class B) benchmarks the floating point 
operations count range from 54 to 686 billion floating point operations for a 
single run. On a 300-MHz R12000-based Origin 2000 using a single processor, 
this translates into measured run times of 1,250-9,700 seconds. Clearly, if 
simulating a 41-second run is a problem, these industry standard benchmarks for 
high performance computing must be all but out of reach. 

In response to this problem, we have developed an entirely different approach to 
simulating these runs. This approach is based on the time tested concept of 
“Back-of-the-Envelope” calculations. With this in mind, we have named our 
program “ENVELOPE.” Rather than trying to simulate every aspect of the 
microarchitecture, this approach assumes that the computer architects know how 
to design a processor. In particular, if they claim that the peak floating point 
speed is 1 GFLOPS, then we take them at their word and use that number in the 
simulation. This also applies to various numbers involving memory, cache, and 
TLB latency and bandwidth. When combined with other system parameters and 
information about the code to be run on the system, an estimated performance is 
produced in a small fixed amount of time (e.g., 1 second). This run time is short 
enough to allow one to easily investigate the effects of turning various hardware 
features (e.g., prefetching) on or off and/or investigate various ways in which 
the code might be tuned. 

2. Description of the Simulator 

The current version of ENVELOPE prompts the user for input (this can come 
from a redirected file), writes its output to standard output, and also writes an 
annotated copy of the input to the file ENVELOPE.INPUTS. This later file can 
easily be edited and used as input in a future run (the annotations will be 
ignored by ENVELOPE). The output is broken into two categories-prompts for 
input and results. Every line that is considered to be a result begins with a pound 
sign (#> so that it can easily be searched when using GREP. Under the direction 
of Shirley Moore of the University of Tennessee at Knoxville, work is under way 
to produce a friendlier user interface using Java. 

The first 18 lines of input describe the hardware in terms of peak characteristics 
(e.g., peak bandwidth between the outermost level of cache and the processor, in 
million bytes per second), minimum characteristics (e.g., memory latency in 



nanoseconds), fundamental values (e.g., cache line size in bytes), and 
miscellaneous descriptions regarding the friendliness of the processor’s design 
(e.g., describing the pipeline depth as short, moderate, deep, or very deep). This 
last set of values is used to estimate how much the peak speed of the processor 
should be discounted. The goal here is to somewhat level the playing field 
between designs that are blazingly fast but terribly unfriendly to program and 
those that made tradeoffs between peak speed and usability by keeping the 
number of operations in flight low and/or supporting features such as Out-of- 
Order execution and/or register renaming. In most cases, this heuristic makes 
little difference in the final result, since the performance of the memory system is 
frequently the limiting factor. 

The remaining questions ask the user to describe the software and its memory 
access patterns. In theory, this information can be derived through inspection of 
the user’s program. In practice, only the simplest of programs can be analyzed in 
this manner with sufficient precision. As an aid to this process, a tool has been 
developed, which will be described in more detail in sections 4 and 5. The main 
characteristic here is that the variable usage can be broken down into the 
following categories: 

(1) Variables that spend a significant amount of time mapped to a register and 
therefore have a negligible number of loads or stores associated with them. 

(2) Scratch arrays that have potentially been sized to fit in one of the levels of 
cache. An estimate of the size of the working set is supplied by the user. 
This can also be used to estimate the parameters for any working set that 
might exist. The assumption here is that there is a negligible cache miss rate 
associated with this working set, but that the flow of data between the 
cache and the processor still needs to be modeled. 

(3) Blocked arrays or alternatively a second, presumably larger, working set. If 
this is used to model a blocked access pattern and if the working set is too 
large to fit into cache, a STRIDE-N access pattern is assumed. However, if 
the option of treating this as just another working set is used and if it fails 
to fit into cache, a STRIDE-l access pattern is assumed. This flexibility 
allows us to model the behavior of a wide range of programs that benefit 
from the presence of a large cache and is particularly useful for programs 
with two or more distinct sizes of working sets. 

(4) Arrays accessed with a STRIDE-N access pattern. In most cases, this access 
pattern will result in a high TLB miss rate. Almost all programs that we 
have looked at have at least some data that is accessed in this way; 
although for well tuned codes, less than 0.1% of all loads/stores will fall 
into this category. The LU NAS benchmark is an interesting exception to 
this rule. It can have 0.45-0.57% of all loads/stores falling into this category 
(depending on the version of the code being used). Fortunately, on many 
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systems, the resulting TLB misses seem to hit in cache, resulting in an 
acceptable level of performance. Unfortunately, it can be difficult to predict 
such behavior without a priori knowledge and/or experimental results to 
compare to. However, when such results are available, the hardware 
parameter for the TLB latency can be adjusted to a more appropriate value 
(e.g., subtract off the cost of a cache miss from the normally used cost of a 
TLB miss). 

(5) Arrays accessed with a STRIDE-l access pattern. 

For categories 3-5, the amount of data reuse (cache and register levels combined) 
can be specified. This allows accurate modeling of programs that might not have 
a working set, or alternatively, the working set might be orders of magnitude 
larger than the cache. Even so, the program need not be restricted to using each 
data item in a cache line just once per cache miss. However, for some usage 
patterns, a usage factor in the range of 1 to 2 is exactly what will be seen. The 
ability to specify the amount of data reuse supports the widest possible range of 
programs without requiring hard coding in any assumptions. 

ENVELOPE has been extensively tested with several numerically intensive 
programs using a variety of RISC and CISC processors. It is also designed to 
handle codes with few, if any, floating point operations. Furthermore, it should 
be able to model other types of architectures (e.g., vector processors), although 
no attempt has been made to date to exercise either of these capabilities. 

Table 1 shows an example of an input file describing the Linpack 100 x 100 
benchmark running on ‘an IBM SP with 375-MHz Power 3 Thin nodes. The 
parameters in this file were derived using a detailed analysis of the source code, 
as well as taking into account common compiler optimizations. 

Table 2 shows an example of an input file describing the NAS CG class B 
benchmark (MPI). Since this benchmark uses an unstructured grid, which 
inhibits prefetching, prefetching has been disabled. Again, the system being 
modeled is an IBM SP with 375-MHz Power 3 Thin nodes. 

The predicted level of performance for the Linpack 100 on the IBM SP (as 
previously described) is 359 MFLOPS, while the measured level of performance 
is 426 MFLOPS. The predicted performance is within 19% of the measured 
performance. If one assumes that the benchmark was run on a dedicated node, 
then the processor could have used a larger percentage of the memory 
bandwidth. This allows the predicted performance to increase to between 481 
and 559 MFLOPS (depending on the precise limitations of the processors 
memory interface), or within ll-31% of the measured performance 131. 

For the CG benchmark, the predicted level of performance is 53 MFLOPS. The 
measured level of performance is 46 MFLOPS, or within 15% of the predicted 
level of performance [4]. Table 3 contains additional results. 



3. The Equations 

This section will discuss some of the equations used by ENVELOPE in estimating 
the performance of a program. The complete set of equations is quite lengthy and 
is beyond the scope of this paper. However, this discussion should be adequate 
in giving one a feel for how this program works. 

3.1 Commonly Scalar Values 

The time spent loading and storing commonly used values into the registers is 
computed using the following equations. It is important to note that it is 
assumed that these values can be found in one or more levels of cache and these 
operations will not result in any TLB misses. There is also an implied assumption 
that a processor cannot do more than one memory operation per opportunity to 
launch a multiply-add instruction. A few processors can, in fact, do better than 
that under certain circumstances. For most RISC and CISC processors, this is not 
a concern. However, it might be an important consideration if this code were to 
be used to model the performance of a Cray C90. 

Runtime = Runtime + 
P#SV@ * #S 

UR#SV@ * UL2BANDWBYI’H ’ 
(1) 

where # can either be L for LOAD or S for STORE and @ can either be 
DEDICATED* or GENERAL.+ 

P#SV@ refers to the percentage of the total amount of data that is either being 
loaded or stored (depending on what # is) of the specified class of values (as 
specified by @). #S is the total amount of data that is either loaded or stored. 
Therefore, the.numerator refers to the amount of data being loaded or stored for 
this class of data. UR#SV@ refers to the amount of reuse at the register level for 
the data in question. The higher the level of reuse, the fewer the loads and stores 
that will actually be executed. In other words, for programs like Linpack, the 
code might indicate that a value will be loaded for each and every multiply-add 
instruction. However, a smart compiler might actually perform the load just 
once. In that case, the value for UR#SV@ would be large enough to make this 
part of the calculation irrelevant. Finally, ULlLBANDWIDTH is the bandwidth 

* The term DEDICATED implies that the values will only be used in calculations involving 
other commonly used values. A prime example of this is Horneis algorithm for evaluating 
polynomial equations. 

t The term GENERAL implies that while the value will be “locked” into a register, it will be 
used in conjunction with other classes of variables. Therefore, the cost of the floating point or 
integer calculations that this value is involved with will be charged to the other classes of variables. 
An example of this type of variable might be PI. 
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between the processor and the outermost level of cache (frequently, the L2 
cache). 

For the DEDICATED variables, it is also necessary to calculate the time spent 
performing calculations involving these variables. This calculation is fairly 
straightforward. The only complicating factor is that since some, if not all, of 
these calculations can be paired up with load and store instructions on today’s 
superscalar processors, one must avoid counting these cycles twice. This can be 
done by subtracting the time spent on the loads and stores for DEDICATED 
variables from the time spent computing with them. Since it is possible that the 
loads and stores will take longer, one needs to take the maximum of the 
difference and zero to avoid overcompensation. 

3.2 Scratch Arrays 

The next order of business is to account for the time spent dealing with small 
scratch arrays that will normally be “locked” into one or more level of cache. 
This is not assumed to be the case, but will generally be the case. Using the same 
notation and terminology as in subsection 3.1, the equations will be: 

Runtime = Runtime + 
P#SA@ * #S 

UR#SA@ * UL2BANDWIDTH ’ 
(2) 

Again, one must also take into account the time spent performing caluclations 
that only involve the scratch array and the commonly used values discussed in 
section 3.1. 

A complicating factor is that one must also take into account the cache misses 
associated with these scratch arrays. ENVELOPE assumes that the number of 
TLB misses associated with the scratch arrays will be negligible. If the working 
set for the scratch arrays is larger than the size of the outermost level of cache, 
then ENVELOPE will assume a STRIDE-l access pattern. Otherwise, ENVELOPE 
assumes that there is a sufficient level of data reuse at the cache level that the cost 
of batching up the cache can be ignored. Since this will normally be the case, we 
will not discuss the equations used any other time. 

3.3 Blocked Memory Access Patterns 

This portion of the code can either be used to estimate the cost of a code segment 
with a blocked memory access pattern or to estimate the cost of code segment 
involving scratch arrays with a larger working set. In the latter case, the 
estimated size of the working set should be negated and specified as the block 
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size.* The details associated with the handling of the case where the block size 
(or second working set size) is larger than the size of the cache will not be 
discussed. However, they are similar to the cases discussed in subsections 3.4 
and 3.5. 

With everything fitting into cache, one still has to be concerned with the cache 
misses associated with batching up the cache. Furthermore, unlike subsection 3.2, 
ENVELOPE does not assume that this cost can be ignored. In the case of a 
blocked access pattern, the level of reuse might be fairly modest (e.g., 2-10). Even 
in the case of a second level of working set, the level of reuse might be more 
limited. This part of the program is split into the following two cases: 

(1) In the case where prefetching has been essentially disabled by setting the 
maximum number of outstanding prefetches/cache misses to 1, the latency 
of a cache miss will effectively determine the usable memory bandwidth. 

(2) In the other case, the memory bandwidth will be the limiting factor.+* 

The first step is to determine the number of cache misses. This number is not 
actually used for the calculation of runtime and performance. It is however used 
to estimate the number of bus transactions. Calculating the time required to 
perform the cache misses is much more complicated. Some of the complicating 
factors are as follows: 

* The negative value is used as a flag when the working set is larger than the cache. If the block 
size is positive, then ENVELOPE will estimate the cost of the loads and stores as though this code 
segment was using a STRIDE-N access pattern (the most expensive access pattern). However, if 
the block size is negative, then EWELOPE estimates the cost of the loads and stores as though this 
code segment was using a STRIDE-l access pattern. While this access pattern is more expensive 
than living out of cache, it is significantly less expensive than a STRIDE-N access pattern. 

t Earlier in the program, the memory bandwidth was adjusted, when necessary, to handle the 
situation in which the supported level of prefetching was insufficient to fully utilize the complete 
memory bandwidth. 

$ ENVELOPE actually supports three separate values for the memory bandwidth: 
(1) The bandwidth when only performing loads. 
(2) The bandwidth when only performing stores. 
(3) The bandwidth when performing a balanced mix of loads and stores. 

For some systems, the three values will be the same. However, for the HP PA 8XXX series of 
processors, on a well balanced system, the third value will actually be the sum of the first two 
values. As a result of this, it is necessary to determine the amount of data being loaded and stored, 
pair the loads and stores at the mixed bandwidth rate, and then finish up with any nonpaired loads 
or stores. This assumes that the code pairs loads and stores as much as possible. This is not always 
the case, but is a good assumption for codes that call the BLAS routines, copy arrays, transpose 
arrays, and perform a variety of other common operations. However, for a program which copies 
data into a small buffer that is “locked” into cache, pounds on the buffer, and then writes the 
results out to a large global array, this can be a poor assumption. Fortunately, for many systems, 
this discussion is academic, since the three values are identical. In the remaining situations, it 
appears as though the maximum error is an overestimation of the performance (under estimation 
of the run time) by a factor of 2. 



(1) Addition a memory traffic resulting from the coherency protocols for cache 1 
lines that are stored to. 

(2) The allocation of memory bandwidth to handle the portion of the loads and 
stores that can be overlapped with each other. 

(3) Calculating the time required for those loads or stores that could not be 
overlapped with stores or loads respectively. 

(4) The grouping of data into data structures. In particular, the inefficiencies 
that can result if most accesses to the structure use less than 100% of the 
data (this will result in the consumption of additional memory bandwidth). 

(5) The level of t emporal locality (the number of times a value is reused prior 
to eviction from the cache). 

Additionally, the number and cost of the TLB misses must be accounted for. 
Fortunately, this process is somewhat simpler than it was for cache misses, since 
ENVELOPE assumes that TLB misses are handled one at a time by the processor 
and cannot be overlapped with anything. In the case where the cost of the stores 
is expected to be greater than the cost of the loads and prefetching is supported, 
the equations are as follows: 

GSIZE 
current cache misses = 

PLGB * LOADS * 
UCLGB * L2LSIZE GDENSITY ’ 

curTent run time = 
PLGB * LOADS * RMTRANSACTIONS 

’ 

(3) 

(4) 
UCLGB * PUMRBANDWIDTH 

current TLB misses = 

PLGB * LOADS PSGB * STORES GSIZE 
* PAGESIZE + UCSGB 

* 
UCLGB * PAGESIZE GDENSITY * 

TEMPBUSTRANSACTIONS = current cache misses * 
RMTRANSACTIONS + current TLB misses. 

(5) 

(6) 

TEMPRUNTIME = current run time * 
GSIZE +, 

GDENSITY (7) 

current TLB misses * TLATENCY * 10 -9 . 

current cache misses = 
PSGB * STORES GSIZE * 

UCSGB * L2LSIZE GDENSITY’ 

current bus transactions = current cache misses * WMTRANSACTIONS. 

03) 

(9) 

current run time = 
PSGB * STORES * WMTRANSACT IONS 

- current run time * PUMWBANDWI DTH 
UCSGB 

(10) 
UMWBANDWIDTH 



TEMPRUNTIME = TEMPRUNTIME + current run time * G,fNyRy. (11) 

total run time = total run time + TEMPRUNTIME. (12) 

TEMPBUSTRANSACTIONS = 
(13) 

TBMPBUSTRANSACTIONS + current bus transactions. 
total bus transactions = (14) 

total bus transactions + TEMPBUSTRANSACTIONS. 

Other cases which are handled separately but in a similar manner are: 

(1) Working set fits into cache, with loads taking longer than Stores, with 
prefetching supported. 

(2) Working set does not fit into cache, and default back to a STRIDE-N access 
pattern has been specified. 

(3) Working set does not fit into cache, and default back to a STRIDE-l access 
pattern has been specified. In this case, all of the possible ways for 
computing a STRIDE-l access pattern for a data set not fitting into cache 
must be handled (see subsection 3.5 for details). 

(4) Working set fits into cache, but prefetching is not supported. This precludes 
the possibility that cache misses resulting from loads and stores can be 
overlapped, since cache misses resulting from loads cannot even overlap 
with themselves.’ 

3.4 STRIDE-N Memory Access Patterns 

In theory, this should be the easiest of the memory access patterns to handle. In 
reality, some additional complications have arisen that are causing some 
problems. These complications will be discussed in greater detail as this section 
progresses. Unlike subsection 3.3, there are only two cases that need to be 
considered here: 

(1) All of the data fits into cache. In this case, ENVELOPE assigns the cost of 
batching up the cache to this access pattern. The cost is calculated in a very 
simple manner designed to produce the smallest possible cost (e.g., the 
minimum number of cache misses and assuming that prefetching is 
supported).+ Additionally, if any calculations are specified for this access 
pattern, their cost will also be calculated. 

* In some cases, this might be too pessimistic, since some systems might support the 
overlapping of coherency traffic (e.g., write backs from cache to main memory as part of an 
eviction) with the handling of a cache miss. It is not clear what the exact importance of this form of 
overlapping would be; therefore, it is currently treated as a higher order effect and is ignored. 

t In some cases, this may be overly optimistic; however, it is unlikely that any jobs other than 
some of the smaller benchmarks (e.g., Linpack 100 x 100) will ever fall into this case. 



(2) By far, the more common case and, therefore, the one that will be 
considered in greater detail is the case where the amount of data is too 
large to fit into the cache (probably by a large amount). 

In this section, the following simplifying assumptions are made when handling 
the second case: 

(1) TLB misses do not overlap with anything. 
(2) TLB misses have a fixed cost, with the page table entry coming from main 

memory. 
(3) Effectively, no form of overlapping multiple cache misses can occur, since 

each of the cache misses will be associated with a TLB miss. 

(4) The grouping of data into structures can reduce the number of TLB misses.’ 
(5) Each TLB m’ rss is expected to have a cache miss associated with it. In 

reality, it is possible for an algorithm (e.g., LU decomposition) to loop 
through a few hundred pages of data with a STRIDE-N access pattern. In 
such a case, there can be significantly more TLB misses than cache misses. 
However, for an algorithm with a random access pattern and/or a working 
set involving tens of thousands (or more) of pages of data, each TLB miss 
should have a corresponding cache miss.+ 

Of all of these assumptions, the second assumption seems to be causing the most 
problems. If the TLB misses occur in a cyclic fashion, it is conceivable that a 
processor might store the page table entries in cache. On many systems, this 
would decrease the cost of a TLB miss by at least a factor of 2. Calculations based 
on benchmarking studies made for the NAS LU Benchmark (class B) indicate that 
on many systems, this is almost certainly happening. At the present time, the 
best solution to dealing with such a case is to significantly decrease the estimated 
cost for TLB misses when modeling such a run. It should be noted that to avoid 
problems with ENVELOPE’s error checking and default mechanisms, the cost of 
a TLB miss should be at least 1 nanosecond. 

* For codes that were analyzed by hand, this can be an important effect. However, since the 
author expects that most codes will be analyzed using the tool discussed in section 4, this effect is 
insignificant. The tool discussed in section 4 recommends input to ENVELOPE based on the 
output from a Perfex run. In that case, any benefit from the grouping of data into structures has 
already been accounted for by a corresponding reduction in the measured TLB miss rate. Such a 
reduction would be expressed as a decrease in the estimated percentage of the work that is mapped 
to the STRIDE-N access pattern. 

t This is not as serious a problem as one might expect. If one assumes that most programs will 
be analyzed by the tool in section 4, then since that tool makes the same assumption, everything 
should work out. There might be some minor discrepancies due to the cache misses being handled 
one at a time; whereas, if they were mapped to a STRIDE-l access pattern they could be overlapped 
using prefetching. However, for a well-tuned code, one can expect the number of TLB misses to be 
significantly smaller than the number of cache misses. In this situation, all of this becomes a higher 
order effect that can be safely ignored. 
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The resulting equations are as follows: 

current cache misses = 
PLGN * LOADS 

UCLGN * DSIZE * GDENSITY’ 

current TLB misses = current cache misses. 

current cache misses = current cache misses * 1 + GSIZE * DSIZE 

1 L2LSIZE ’ 

current bus transactions = current cache misses * 

RMTRANSACTIONS + current TLB misses. 

L 

current cache misses * MLATENCY * 

current run time = RMTIWNSACTIONS + 

I 

-9 *lO . 

current TLB misses * TLATENCY 

TEMPRUNTIME = current run time. 

TEMPBUSTRANSACTIONS = current bus transactions. 

current cache misses = 
PSGN * STORES 

UCSGN * DSIZE * GDENSITY’ 

current TLB misses = current cache misses. 

current cache misses = current cache misses * 1 + GSIZE * DSIZE 1 L2LSIZE ’ 

current bus transactions = current cache misses * 

WMTRANSACTIONS + current TLB misses. 

current cachemisses * MLATENCY * 

current run time = WMTRANSACTIONS + 

L 

* 10-g. 

current TLB misses * TLATENCY ,I 

TEMPRUNTIME = TEMPRUNTIME + current run time. 

total run time = total run time + TEMPRUNTIME. 

TEMPBUSTRANSACTIONS = 

TEMPBUSTRANSACTIONS + current bus transactions. 
total bus transactions = total bus transactions + 

TEMPBUSTRANSACTIONS. 
TEMPRUNTIME = 
2.0 * PGNMADDS * NMADDS+ PGMULTIPLIES * NMULTIPLIES 

-- _.--- 
UMAUDS UMULTIPLIES 

(15) 

(16) 

(17) 

(19) 
(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 

(2% 

(30) 
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TEMPRUNTIME = TEMPRUNTIME + 
PGNADDS * NADDS+ 

UADDS 
(31) 

PGNIOPS * NIOPS 

UIOPS * 
TEMPRUNTIME = 

TEMPRUNTIME, 
PLGN * LOADS+ PSGN * STORES (32) 

UL2BANDWIDTH 

total run time = total run time + TEMPRUNTIME. (33) 

3.5 STRIDE-l Memory Access Patterns 

Once again, the STRIDE-l Memory Access pattern requires the handline of the 
following special cases: 

(1) The data set being small enough to fit entirely in cache. Again, this case is 
primarily there to support some small benchmarks (e.g., Linpack 100 x 
100). As seen in subsection 3.4, the cost of the cache and TLB misses have 
already been accounted for. Therefore, all that remains is the 
straightforward handling of the cost of the instructions themselves. This is 
done in a manner that is very similar to the last four equations in 
subsection 3.4. 

(2) A STRIDE-l access pattern with prefetching disabled. This implies that the 
cache misses do not overlap. Therefore, whether the loads or stores take 
longer to complete is not a concern. 

(3) The cases of a STRIDE-l access pattern with prefetching enabled. The 
relative costs of the loads and stores is now a concern. While these two 
cases must be handled separately, the resulting equations both look very 
similar to those used in subsection 3.3. Therefore, they will not be repeated 
here. 

What will be looked at here is the second case. The resulting equations are as 
follows: 

current cache misses = PLGl * LOADS GSIZE 
UCLGI * L2LSIZE * GDENSITY ’ 

(34) 

current TLB misses = 

( 

PLGI * LOADS GSIZE (35) 
UCLGl * PAGESIZE + GDENSITY 

current bus transactions = current cache misses * 
(36) 

RMTRANSACTIONS + current TLB misses. 
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i 

current cache misses * MLATENCY * 
current run time = RMTRANSACTIONS + current TLB misses * 10-g. 

* TLATENCY I 

TEMPRUNTIME = current run time. 

TEMPBUSTRANSACTIONS = current bus transactions. 

PSGl * STORES current cache misses = UCSGl 
* L2LSIZE * 

GSIZE 
GDENSITY ’ 

PSGl * STORES current TLB misses = UCSGl * PAGESIZE * GSIZE 
GDENSITY * 

current bus transactions = current cache misses * 
WMTRANSACTIONS + current TLB misses. 

current cache misses * MLATENCY * 
current run time = 

r 

WMTRANSACTIONS + 

1 

* 10 -9 . 
current TLB misses * TLATENCY 

TEMPRUNTIME = TEMPRUNTIME + current run time. 

total run time = total run time + TEMPRUNTIME. 

TEMPBUSTRANSACTIONS = 
TEMPBUSTRANSACTIONS + current bus transactions. 

total bus transactions = total bus transactions + 
TEMPBUSTRANSACTIONS. 

TBMPRUNTIME = 
2.0 * PGlMADDS * NMADDS+ PGlMULTIPLIBS * NMULTIPLIES 

UMADDS UMULTIPLIBS 

TEMPRUNTIME = TEMPRUNTIME + 
PGlADDS * NADDS 

+ 
UADDS 

PGlIOPS * NIOPS 

UIOPS . 

TEMPRUNTIME = 

PLGl * LOADS+ PSGl * STORES 
UL2BANDWIDTH 

total run time = total run time + TEMPRUNTIME. 

(37) 

(38) 
(39) 

(40) 

(41) 

(42) 

(43) 

(4.4) 
(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

4. Associated Tools 

Unfortunately, most people will find it difficult, if not impossible, to analyze the 
usage patterns of most programs with sufficient detail for use with ENVELOPE. 
In an attempt to solve this problem, we have written a second program which 
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prompts for information from an instrumented run (e.g., Perfex on an SGI system 
and or the Hardware Performance Monitor on Cray vector systems). Based on a 
modest number of questions, it will solve a series of equations and supply a set 
of numbers for use with ENVELOPE. Unlike ENVELOPE, some assumptions and 
heuristics are used in this tool. As a result, the results may not be unique and 
probably will not exactly match what would be produced by a detailed analysis 
of the user’s program. However, the results should be sufficient to allow 
ENVELOPE to accurately predict many aspects of the performance of the user’s 
program (e.g., run time and performance in terms of MFLOPS). Table 4 shows a 
sample run of this program. 

5. The Equations for the Associated Tools 

This section will discuss some of the equations used by the tool which uses data 
from Perfex (or similar programs/libraries, e.g., PAPI) to simplify the job of 
creating an input file for ENVELOPE. This tool contains two parts. The first part 
is optional, and when used, will use one of two approaches (depending on the 
available input data) to estimate the number of floating point adds, multiplies, 
and multiply-add instructions that are executed during a run. It should be noted 
that each of these instructions actually represents a group of instructions (e.g., 
“adds” includes adds, subtracts, compares, as well as other less frequently used 
instructions such as convert, int, abs, etc.). Subsections 5.1-5.3 will discuss this 
part of the tool in greater detail.* 

The second part of the tool calculates (or, in a few cases, provides crude estimates 
based on rules of thumb) most of the remaining inputs needed to describe the 
software to ENVELOPE. This part of the tool will be discussed in subsections 
5.4-5.8. 

5.1 Conventions Used in Subsections 5.2 and 5.3 

The following conventions will be used in subsections 5.2 and 5.3 to simplify the 
equations. 

* One important point to remember is that some compilers will only produce independent 
multiply and add instructions, other compilers will preferentially produce multiply-add 
instructions, and a few will produce a mix based on some optimization criteria. Furthermore, for 
some hardware, this will make little if any difference in the performance. However, for other 
systems, there might be a significant difference in performance (e.g., up to a factor of 2). Therefore, 
in cases where the tool estimates that a large number of independent multiply and add instructions 
are being used, one might want to calculate the performance based on both that set of numbers and 
on the assumption that the hardware is executing the instructions as though they were chained 
multiply-add instructions. Fortunately, in most cases, factors such as the amount of time spent on 
cache misses and the ratio between memory operations (loads and stores) vs. floating point 
operations may eliminate most of the potential difference in performance. 
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NADDS = number of floating point add instructions. 

NFINST = number of floating point instructions. 

NFLOPS = number of floating point operations. 

NMADDS = number of floating point multiply-add instructions. 

NMULTIPLIES = number of floating point multiply instructions. 

NRECIPROCALS = number of reciprocal approximation instructions. 

“> ” = greater than. 

“2” = greater than or equal to. 

‘IcN = less than. 

r’lN = less than or equal to. 

5.2 Estimating the Numbers and Types of Floating Point Instructions 
Using a Combination of u priori Data and Data From Perfex 

If one has access to a count of the number of floating point operations for a run, 
as is frequently the case for industry standard benchmarks, then one can use that 
information in conjunction with the floating point instruction count from Perfex 
to estimate the number of times each of the three classes of instructions (adds, 
multiplies, multiply-adds) is executed during a run. Alternatively, by comparing 
the floating point instruction count from two runs (one compiled with the use of 
multiply-adds enabled and one compiled with their use disabled), one can also 
use the following equations: 

If NFINST ;I NFLOPS, then 

NMADDS = 0.0, 

NADDS= 0.5 * NFLORS, 

and 

NMULTIPLIES = NADDS. 

Otherwise, if FLINST 2 0.5 * NFLORS, then 

NMADDS = 0.5 * NFLOI’S, 

NADDS = 0.0, 

and 

Otherwise, 

NMULTIPLIES = 0.0. 

and 

NMADDS = NFLORS - NFINST, 

NADDS = NFINST - NMADDS, 

(52) 

(53) 

15 



NMULTIPLIES = O.O.* (54) 

It is important to note that the equations being used have been made more robust 
by eliminating the assumption that the compiler produced a floating point 
operation count that was identical to that produced by a priori knowledge. In 
some cases, an optimizing compiler might do slightly better. In other cases, an 
optimizing compiler might even add floating point operations if it thought that 
the efficient use of multiply-add instructions would improve the overall 
performance of the code. By not relying on this assumption, one can be certain 
that none of the operation counts will ever be negative or exceed the specified 
number of floating point operations. 

5.3 Estimating the Numbers and Types of Floating Point Instructions 
Using a Combination of Data From HPM and Perfex 

If one has access to both the output from the hardware performance monitor on a 
Cray Research vector processor (e.g., C90) and the floating point instruction 
count from Perfex, one can estimate the number of times each of the three classes 
of instructions (adds, multiplies, multiply-adds) is executed during a run. In this 
case, the reciprocal approximation instruction from the Cray vector processor 
will be lumped in with the multiply instructions. The rationale for this is to treat 
the combination of the reciprocal approximation with the additional refinement 
step as a divide instruction. ENVELOPE suggests that divides be included with 
the multiply instructions with an appropriate weighting factor. Effectively, this is 
what we are doing in the following equations: 

If NADDS + NMULTIPLIES + NRECIPROCALS 2 NFINST, then 

and 

NMULTIPLIES = NMULTIPLIES + NRECIPROCALS, 

NMADDS = 0.0, (55) 

NADDS remains unchanged. 

Otherwise, if NADDS + NMULTIPLIES + NRECIPROCALS 2 0.5 * NFINST, 
then 

NMADDS = minimum of (NADDS or NMULTIPLIES), 

NADDS = NADDS - NMADDS, 

* For most of today’s processors, the cost of a floating point add is the same as the cost of a 
floating point multiply. Therefore, assigning all of the excess floating point instructions to the 
floating point adds will not effect the results produced by ENVELOPE. However, on some older 
processors such as the MIPS R4000/R4400 and the KSRI, this assumption is no longer valid. On 
these machines, there may be a difference in the estimated performance, and one might want to 
determine what the bounds on this performance are by running ENVELOPE twice---once with all 
of the excess instructions classified as floating point adds and the second time with all of the excess 
instructions classified as floating point multiplies. 
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and 

NMULTIPLIES = NMULTIPLIES + NRECIPROCALS - NMADDS. (56) 

Otherwise, if NADDS < MULTIPLIES, then 

NMADDS = minimum of (NRECIPROCALS + NADDS + NMULTIPLIES - 

NFINST or NADDS), 

NADDS = NADDS - NMADDS, 

and 

NMULTIPLIES = NMULTIPLIES + NRECIPROCALS - NMADDS. (57) 

Otherwise, 

NMADDS = minimum of (NRECIPROCALS + NADDS + NMULTIPLIES - 

NFINST or NMULTIPLIES), 

NADDS = NADDS - NMADDS, 

and 

NMULTIPLIES = NMULTIPLIES + NRECIPROCALS - NMADDS. (58) 

Again, one can see that we were careful to handle the situations where the 
numbers do not add up. However, to the extent that numbers do add up, we 
make the assumption that programs take advantage of chained multiplies and 
adds on the Cray vector processors. Therefore, these chained operations should 
be translated into multiply-add instructions for the purposes of running 
ENVELOPE. 

5.4 Conventions and Approximations Used in Subsections 5.5-5.8 

In subsections 5.5-5.8, the following approximations are made: 

(1) Since Perfex is being used to return data on a complete run, the data is not 
broken down by subroutine, let alone memory access pattern. Therefore, 
for each type of memory access pattern (e.g., STRIDE-l), this tool assumes 
that the same percentage of loads as stores are used in a section. This does 
not mean that the STRIDE-l access pattern has both a billion loads and a 
billion stores. Rather, it means that if 5% of the total loads exhibit the 
STRIDE-l access pattern, we will assume that 5% of the total stores will also 
exhibit this access pattern. 

(2) For the same reasons as in (1), we will assume that the same percentage of 
multiply-adds, adds, multiplies, and integer operations unrelated to 
address calculations (normally, the number of these calculations will be 
zeroed out for floating point intensive applications) are used for each type 
of memory access pattern. Furthermore, we will assume that this 
percentage is the same as that calculated in (1). 
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(3) In accordance with the way ENVELOPE is set up, we will assume that each 
TLB miss has a cache miss associated with it. This need not be the case if 
the cache line is still in the cache, as can happen with a STRIDE-N access 
pattern executed with a cyclic basis. However, if the number of data items 
is too large or if the access pattern is actually fairly random, then this 
assumption is correct. In either case, since Perfex does not provide a way to 
distinguish between the two cases, both ENVELOPE and this tool have 
been set up to function in this manner. Therefore, this should not result in 
any problems. 

(4) The recommended values for the group size and group density are 1 unless 
known otherwise, in which case, one might want to use the value 1 since 
the consequences of the grouping of data were already factored into the 
output of Perfex and would be difficult to compensate for at this point. 

(5) The number of integer loads and stores is negligible for a floating point 
intensive code. So the time required for them can be ignored. 

(6) Data reuse at the register level has already been factored in by the compiler, 
having eliminated the loads and stores at compile time. Therefore, there 
were no “theoretical” loads and stores to be accounted for by the 
*SVDEDICATED and *SVGENERAL input parameters. The recommended 
output values will then be 1.0 for the “Used” values indicating no data 
reuse and 0.0 for the “percentage” values indicating no work is attributed 
to this access pattern. 

In subsections 5.5-5.8, the following conventions will be used: 

ADJMEM = the adjusted number of memory operations. 
ClLl = the number of Ll cache misses attributed to anything other than a 

STRIDE-N (or random) access pattern. This can result from either a STRIDE-l 
access pattern or a second larger working set that fits into the L2 but not the Ll 
cache. 

ClL2 = the number of L2 cache misses attributed to anything other than a 
STRIDE-N (or random) access pattern. Primarily, this is expected to be the 
result of a STRIDE-l access pattern. 

CGBLl = The Ll cache misses associated with a larger working set (e.g., from a 
blocked access pattern involving large “global” arrays). 

CN = the number of cache misses attributed to a STRIDE-N (or random) access 
pattern. 

DSIZE = the size of the data item in bytes (usually 8). 
DPERLl = LlLSIZE/DSIZE = the number of data elements per Ll cache line. 
DPERL2 = L2LSIZE/DSIZE = the number of data elements per L2 cache line 
LlLSIZE = the size of the cache line in the Ll cache. 
LlMISS = the number of Ll cache misses. 
LlPERL2 = L2LSIZE/LlLSIZE =,the number of Ll cache lines per L2 cache lines. 
L2LSIZE = the size of the cache line in the L2 cache. 
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L2MISS = the number of L2 cache misses. 
L2PERPAGE = PAGESIZE/L2LSIZE = the number of L2 cache lines per page. 
NLOADS = the number of LOADS that graduated (completed). 
NSTORES = the number of STORES that graduated. 
PAGESIZE = the page size in bytes. 
PERGl = The percentage of the memory operations with a STRIDE-l access 

pattern. Initially, this value will be set to 0.0. 
PERGB = The percentage of the memory operations associated with the blocked 

memory access pattern associated with the larger working set. 
PERGN = The percentage of the memory operations with a STRIDE-N access 

pattern. 
PERSA = The percentage of the memory operations associated with the use of 

small scratch arrays in the smaller working set. 
TLBMISS = the number of TLB misses. 
USEGl = The data use/reuse for the STRIDE-l access pattern. Initially, this value 

will be set to 1.0, indicating no reuse. However, if the value for PERGl changes 
from its initial value of 0.0, this number wiIl be recalculated. 

USEGB = The data use/reuse associated with the blocked memory access pattern 
associated with the larger working set. 

USEGN = The data use/reuse for the STRIDE-N access pattern. This will always 
be hardwired as 1.0, indicating no reuse. This does not really matter since any 
reuse that does occur will simply be charged to another access pattern in a 
manner that does not result in additional TLB or cache misses. 

5.5 Solving for the STRIDE-N Access Pattern Parameters 

The next stage of the process is to solve for the STRIDE-N access parameters, 
since that will tell us how many L2 misses remain to be allocated among the 
remaining access patterns. Again, reasonable checks will be made and, if 
necessary, the values will be adjusted accordingly. The need for this can have 
any number of sources (e.g., extraneous cache and TLB misses due to 
timesharing a processor or alternatively process migration on a shared memory 
SMP). The tool wiIl now solve the following system of equations: 

L2MISS = ClL2 + CN. (59) 

TLBMISS = ClL2 
L2PERPAGE 

+ CN. 

Solving for ClL2 and CN, one comes up with the following equations: 

c1L2 = L2MISS - TLBMISS 

l.O- l*O 
L2PERPAGE 

CN = L2MISS - ClL2. 

(61) 
(62) 
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Performing the sanity checks, one ends up with 

If ClL2 < 0.0, then 

ClL2 = 0.0 and 

CN = L2MISS. (63) 

Otherwise, if CN < 0.0, then 

ClL2 = L2MISS and 

CN = 0.0. 

ADJMEM = NLOADS + NSTORES. 

w 

(65) 

PERGN= CN 
ADJMEM’ (66) 

ADJMEM = ADJMEM - CN. (67) 

ClLl = LlMISS - CN. (68) 

CGBLI = ClLl - ClL2 * LlPERL2. (69) 

5.6 Solving for the Blocked Access Pattern Parameters 

Now that the STRIDE-N access pattern has been accounted for and the number 
of memory operations and cache misses that remain to be accounted for is 
known, we proceed to the question of the existence of a large working set which 
will live out of the L2 cache. The heuristic that will be used at this point is 
somewhat arbitrary but is based on the concept that unless there is a reasonable 
amount of data reuse, one cannot say that a working set exists. 

If ClLl 
LlPERL2 * ClL2 

~4.0, then we have a large working set, and the following 

equations are used: 

PERGl = 0.0. (70) 

USEGl = 1 .O. (71) 

This implies that all of the remaining L2 cache misses will be charged to the 
blocked access pattern, with no work assigned to a STRIDE-l access pattern. This 
is a somewhat arbitrary assignment. However, since both access patterns will 
produce the same ratio between TLB misses and L2 cache misses, this should not 
be a problem as long as the working set fits into the cache. If one moves onto a 
system that lacks an L2 cache or where the cache is too small, then one needs to 
specify if ENVELOPE is to treat the resulting access pattern as if it is STRIDE-l or 
STRIDE-N. The recommended default when using this tool is STRIDE-l, which is 
specified by negating the estimated size of the working set to be discussed in 
more detail in section 5.8. 
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The tool now assumes that all of the Ll cache misses are the result of this larger 
working set, since if a smaller working set also exists, it will live out of the Ll 
cache. As such, the smaller working set is expected to have a negligible cache 
miss rate. This corresponds to the use of small scratch arrays (the SA input 
parameters for ENVELOPE). 

ADJMEM = ADJMEM - ClLl * DPERLl. 
(72) 

If ADJMEM < 0.0, then 
ADJMEM = 0.0. (73) 

PERGB = ClLl * DPERLl 
NLOADS + NSTORES’ 

USEGB = 
ClLl 

LlPERL2 * ClL2 ’ 

PERSA = 
ADJMEM 

NLOADS + NSTORES’ (76) 

The recommended size for the large working set is 1.0 MB, with a STRIDE-l 
access pattern if the cache is too small. The choice of 1.0 MB is somewhat 
arbitrary but is based on most SGI systems in recent years using a L2 cache size 
of l-8 MB. Furthermore, most of the competing systems, when equipped with a 
large cache, also have a cache size of at least 1 MB. However, experience has 
indicated that some of the NAS benchmarks have a large working set small 
enough to fit in the caches of the Cray T3E and the IBM SP with Power 2 Super 
Chips. Therefore, prudence dictates that one might want to compare the 
predicted performance to the measured performance on one of these systems in 
an attempt to fine-tune this parameter. All we know for certain is that the size of 
the larger working set is somewhere between the size of the Ll and L2 caches. 
This concludes the handling of the situation in which a large working set occurs. 
Subsections 5.7 and 5.8 only apply to the situation where a working set is either 
missing or not very effective. 

5.7 Checking for the Case of a Small Working Set Without a Large 
Working Set 

The tool starts out by setting the parameters that describe the larger working set, 
causing that access pattern to be skipped by ENVELOPE. 

PERGB = 0.0. (77) 

USEGB = 1.0. (78) 

Once again, the tool uses a heuristic to check to see if a small working set exists 
and is effective. 
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If 
ADJMEM 

DPERLl * CGBLl 
2 4.0, then we have a small working set. This means that 

there is a cache resident small scratch array. The tool now calculates what 
percentage of the memory operations involve this small working set and what 
percentage needs to be mapped to the STRIDE-l access pattern to achieve the 
correct number of L2 cache misses and TLB misses. It should be noted that the 
small working set is assumed to have an insignificant number of L2 cache misses 
and TLB misses associated with it. Since the STRIDE-l access pattern is being 
used only to the extent necessary to account for the L2 cache misses and the TLB 
misses, it will be assigned a data use/reuse value of 1.0, indicating that all data 
reuse is associated with the small working set. 

PERSA = AIXMEM - ClL2 * DPERL2 
NLOADS + NSTORES 

If PERSA > 1.0, then 

PERSA = 1.0. (80) 

PERGl = 1.0 - PERSA - PERGN. (81) 

If PERGl > 1.0, then 

If PERSA < 0.0, then 

PERGl = 1.0. (82) 

PERSA = 0.0. (83) 

USEGl = 1.0. (84 

The last remaining value is the estimated size of the smaller working set. All we 
know for certain is that it has to fit into the 32 kB cache of the MIPS RlOK or 
R12K processor of the system that has been used. It probably is somewhat 
smaller than that, so the tool recommends the value of 12 kB, which is a safe 
number for almost all of the RISC processors made since 1990. The tool has now 
completed its task, and subsection 5.8 should be skipped. 

5.8 Handling the Case Where No Working Sets Exist 

The tool has now determined that no working sets exist, so all of the data access 
must be mapped to either a STRIDE-N access pattern or a STRIDE-l access 
pattern. In subsection 5.5, the portion mapped to the STRIDE-N access pattern 
was calculated, leaving the STRIDE-l access pattern to be handled now. 

PERSA = 0.0. (85) 

PERGGI = 1.0 - PERGN. (86) 

USEGl = ADJMEM 
DPERL2 * ClL2 
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The only complicated part of this is that any data reuse that occurs must now be 
mapped to the STRIDE-l access pattern, as was done in the last equation. This 
concludes the discussion of the equations and logic behind this tool. 

6. Future Work 

Work is currently under way to improve the usability of this code. Additionally, 
research has been initiated to try and identify what characteristics of a parallel 
code need to be taken into consideration when estimating the performance of a 
parallel program. Unfortunately, our initial experience in this area indicates that 
this is a highly complex problem that is probably too difficult to tackle in the 
general case. We hope that in the future, we will be able to produce useful 
simulators for some of the more commonly found cases. 

7. Results and Conclusions 

We have created an entirely new simulator based on Back-of-the-ENVELOPE 
calculations that is capable of simulating the performance of computationally 
intensive workloads in a short fixed amount of time. An associated tool that 
makes the simulator friendlier to use has also been discussed. Experience with 
using ENVELOPE has shown that in almost alI cases, it can accurately predict the 
performance of the user’s code to within a factor of 2 of the measured value. 
Furthermore, in many cases, we were able to achieve agreement with 
experimental results to within *lo-15 % . 
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Table 1. Input parameters for an IBM SP with 375 MHz for the Linpack Power 3 Thin SMP nodes 100 x 100 benchmark. 

Input Data Annotations Produced by ENVELOPE for ENVELOPE.INPUTS Additional Comments 

400.00 
8.000000 

128 
8000.000 

4 
800.00 

1000.0000 
1000.0000 
1000.0000 

2 
1500.0000 
750.0000 
750.0000 

m 
Y 
Y 

10 
1500.0000 

8 
7.6700002E-03 
2.5599999E-03 
343000.0 

0.0000000E+00 
0.0000000E+00 
7.9999998E-02 
1 .oooooo 
1 .oooooo 

0.0000000E+00 

memory latency in NS 
cache size in MB 

cache line size in bytes 
cache bandwidth for hits in MB/second 

page size in kB 
TLB latency in NS 
memory bandwidth for reads in MB/second 
memory bandwidth for writes in MB/second 
memory bandwidth for a mix of reads/writes MB/second 

the number of “bus” transactions per write miss 
the peak speed when performing MADDS 
the peak speed when performing Multiplies 
the peak speed when performing Adds 

the pipeline depth 
Out-of-Order execution 
Register Renaming 

the maximum number of outstanding prefetches/cache misses 
peak rate for integer operations 

size of the data item in bytes 
the amount of data being loaded into the processor in GB 
the amount of data being stored by the processor in GB 
the number of madds 
the number of multiplies, etc. 
the number of adds, etc. 
the memory footprint (RSS) 
is the size of the group 

is the density of the group 
the number of integer operations 

Characteristics of the hardware. 

General characteristics of the 
software. 



Table 1. Input parameters for an IBM SP with 375 MHz for the Linpack Power 3 Thin SMP nodes 100 x 100 benchmark (continued). 

Input Data Annotations Produced by ENVELOPE for ENVELOPE.INPUTS 

1.000000 Used RLSVDEDICATED 
0.0000000E+00 Percentage LSVDEDICATED 
1 .oooooo Used RSSVDEDICATBD 

0.0000000E+00 Percentage SSVDEDICATED 
0.0000000E+00 Percentage SVMADDS 
0.0000000E+00 Percentage SVMULTIPLIES 
0.0000000E+00 Percentage SVADDS 
0.0000000E+00 Percentage SVIORS 
100.0000 Used RLSVGENERAL 
33.33333 Percentage LSVGENERAL 
1 .oooooo Used RSSVGENERAL 
0.0000000E+00 Percentage SSVGENERAL 
1.000000 Used RLSADEDICATED 
0.0000000E+00 Percentage LSADEDICATED 
1.000000 Used RSSADEDICATED 
0.0000000E+00 Percentage SSADEDICATED 
0.0000000E+00 Percentage SAMADDS 
0.0000000E+00 Percentage SAMULTIPLIES 
0.0000000E+00 Percentage SAADDS 
0.0000000E+00 Percentage SAIOPS 
1 .oooooo Used RLSAGENERAL 
0.0000000E+00 Percentage LSAGENERAL 
1 .oooooo Used RSSAGENERAL 
0.0000000E+00 Percentage SSAGENERAL 
l.l70000E-02 the scratch array memory footprint 

Additional Comments 

Operations only involving data 
held in registers. 

Other operations involving data 
held in registers. 

Operations only involving scratch 
arrays and data held in registers. 

Other operations involving scratch 
arrays. 

Working set size. 



Table 1. Input parameters for an IBM SP with 375 MHz for the Linpack Power 3 Thin SMP nodes 100 x 100 benchmark (continued). 

Input Data Annotations Produced by ENVELOPE for ENVELOPE.INPUTS Additional Comments 

1 .oooooo Used CLGB Operations involving either a 
0.0000000E+00 Percentage LGB blocked access pattern or a second, 
1 .oooooo Used CSGB larger working set. 

0.0000000E+00 Percentage SGB 
0.0000000E+00 Percentage GBMADDS 
0.0000000E+00 Percentage GBMULTIPLIES 
0.0000000E+00 Percentage GBADDS 
0.0000000E+00 Percentage GBIOPS 
1 .oooooo the block size 
1 .oooooo Used CLGN Operations involving a Stride N 

0.0000000E+00 Percentage LGN access pattern. 
1 .oooooo Used CSGN 

0.0000000E+00 Percentage SGN 
0.0000000E+00 Percentage GNMADDS 
0.0000000E+00 Percentage GNMULTIPLIES 
0.0000000E+00 Percentage GNADDS 
0.0000000E+00 Percentage GNIOPS 
1.670000 Used CLGl Operations involving a Stride 1 
67.00000 Percentage LGl access pattern. 
1 .oooooo Used CSGl 
100.0000 Percentage SGl 
100.0000 Percentage GlMADDS 
100.0000 Percentage GlMULTIPLIES 
100.0000 Percentage GlADDS 
100.0000 Percentage Gl IOPS 



Table 2. Input parameters for an IBM SF’ with 375-MHz Power 3 Thin SMP nodes for the CG NAS benchmark (class B using MPI) with 
prefetching “disabled.” 

Input Data Annotations Produced by ENVELOPE for ENVELOPE.INPUTS Additional Comments 

400.0000 memory latency in NS Characteristics of the hardware. 
8.000000 cache size in MB 

128 cache line size in bytes 
8000.000 cache bandwidth for hits in MB/second 

4 page size in kB 
800.0000 TLB latency in NS 
1000.000 memory bandwidth for reads in MB/second 
1000.000 memory bandwidth for writes in MB/second 
1000.000 memory bandwidth for a mix of reads/writes MB/second 

2 the number of ‘bus” transactions per write miss 
1500.000 the peak speed when performing MADDS 
750.0000 the peak speed when performing Multiplies 
750.0000 the peak speed when performing Adds 

m the pipeline depth 

Y Out-of-Order execution 

Y Register Renaming 
1 the maximum number of outstanding prefetches/cache misses 

1500.000 peak rate for integer operations 
8 size of the data item in bytes General characteristics of the 

628.0000 the amount of data being loaded into the processor in GB software. 
8.407000 the amount of data being stored by the processor in GB 

2.8706488E+lO the number of madds 
0.0000000E+00 the number of multiplies, etc. 
0.0000000E+00 the number of adds, etc. 
776.0000 the memory footprint (RSS) 
1.000000 is the size of the group 
1.000000 is the density of the group 

0.0000000E+00 the number of integer operations 



Table 2. Input parameters for an IBM SP with 375-MHz Power 3 Thin SMP nodes for the CG NAS benchmark (class B using MPI) with 
prefetching “disabled” (continued). 

Input Data Annotations Produced by ENVELOPE for ENVELOPE.INPUTS Additional Comments 

1 .oooooo Used RLSVDEDICATED Operations only involving data 
0.0000000E+00 Percentage LSVDEDICATED held in registers. 
1 .oooooo Used RSSVDEDICATED 

0.0000000E+00 Percentage SSVDEDICATED 
0.0000000E+00 Percentage SVMADDS 
0.0000000E+00 Percentage SVMULTIPLIES 
0.0000000E+00 Percentage SVADDS 
0.0000000E+00 Percentage SVIOPS 
1 .oooooo Used RLSVGENERAL Other operations involving data 

0.0000000E+00 Percentage LSVGENERAL held in registers. 
1 .oooooo Used RSSVGENERAL 

0.0000000E+00 Percentage SSVGENERAL 
1 .oooooo Used RLSADEDICATBD Operations only involving scratch 

0.0000000E+00 Percentage LSADEDICATED arrays and data held in registers. 
1 .oooooo Used RSSADEDICATED 

0.0000000E+00 Percentage SSADEDICATED 
0.0000000E+00 Percentage SAMADDS 
0.0000000E+00 Percentage SAMULTIPLIES 
0.0000000E+00 Percentage SAADDS 
0.0000000E+00 Percentage SAIOI’S 
1 .oooooo Used RLSAGENERAL Other operations involving scratch 

0.0000000E+00 Percentage LSAGENERAL arrays. 
1 .oooooo Used RSSAGENERAL 

0.0000000E+00 Percentage SSAGENERAL 
1.170000E-02 the scratch array memory footprint Working set size. 



. 

Table 2. Input parameters for an IBM SP with 375-MHz Power 3 Thin SMP nodes for the CG NAS benchmark (class B using MPI) with 
prefetching “disabled” (continued). 

Input Data 

1.000000 
0.0000000E+00 
1 .oooooo 
0.0000000E+00 
0.0000000E+00 
0.0000000E+00 
0.0000000E+00 
0.0000000E+00 
-0.1100000 

1.000000 
2.2634468E-03 
1.000000 

2.2634468E-03 
2.2634468E-03 
2.2634468B03 
2.2634468E-03 
2.2634468E-03 
2.055018 
99.99773 
2.055018 
99.99773 
99.99773 
99.99773 
99.99773 
99.99773 

Annotations Produced by ENVELOPE for ENVELOPE.INPUTS Additional Comments 

Used CLGB 
Percentage LGB 
Used CSGB 
Percentage SGB 
Percentage GBMADDS 
Percentage GBMULTIPLIES 
Percentage GBADDS 
Percentage GBIOPS 
the block size 
Used CLGN 
Percentage LGN 
Used CSGN 
Percentage SGN 
Percentage GNMADDS 
Percentage GNMULTIPLIES 
Percentage GNADDS 
Percentage GNIOPS 
Used CLGl 
Percentage LGl 
used CSGl 
Percentage SGl 
Percentage GlMADDS 
Percentage GlMULTIPLIES 
Percentage GlADDS 
Percentage GlIOPS 

Operations involving either a 
blocked access pattern or a second, 
larger working set. 

Operations involving a Stride N 
access pattern. 

Operations involving a Stride 1 
access pattern. 



I System 

02K-195 
02K-195 
02K-195 
02K-195 
02K-195 
02K-195 
02K-195 
02K-195 
02K-195 
02K-195 
02K-195 

Table 3. A comparison of predicted results from ENVELOPE to measured results. 

Benchmark 

Linpack 100 x 100 
BT 
CG 
LU 
LU 
LU 
SP 
SP 
F3D-shared 
F3D-distributed 

CTH 
BT 
CG 
LU 
LU 
SP 
SP 

Predicted Measured 

Speed Speed 
(MFLOPS) (MFLOPS) 

132 114 
64 55 
43 39 
74 92 

108 92 
74 44 
50 42 
63 42 

205 177 
55 50 

152 87 
152 87 

68 79 
47 38 
78 85 

117 85 
52 68 
67 68 

Measured 

Predicted 
0.86 
0.86 
0.91 
1.24 
0.85 
0.59 
0.84 
0.67 
0.86 
0.91 
0.57 
0.57 
1.16 
0.81 
1.09 
0.73 
1.31 
1.01 

Source 

t31 
[51 
151 
151 
[5], assuming a dedicated node and TLB misses to L2 cache. 
[61 
151 
[5], assuming a dedicated node. 

t71 
181 
[8], assuming that prefetching is ineffective. 
[61 
[91 
191 
[9], assuming a dedicated node and TLB misses to L2 cache. 
191 
[9], assuming a dedicated node. 



Table 3. A comparison of predicted results from ENVELOPE to measured results (continued). 

Predicted Measured Measured 
System Benchmark Speed Speed Source 

(MFLOPS) (MFLOES) Predicted 
02K-300 Linpack 100 x 100 179 173 0.97 [31 
02K-300 BT 70 72 1.03 161 
02K-300 CG 49 44 0.90 161 
02K-300 LU 81 88 1.09 El 
02K-300 LU 124 88 0.71 [6], assuming a dedicated node and TLB misses to L2 cache. 
02K-300 SP 54 69 1.28 [61 
02K-300 SP 70 69 0.99 [6], assuming a dedicated node. 
02K-300 FSD-shared 264 248 0.94 
02K-300 F3D-distributed 59 62 1.05 [71 
02K-300 Cl-H 208 125 0.60 P31 
02K-300 CTH 209 125 0.60 [8], assuming that prefetching is ineffective. 
03K-400 Linpack 100 x 100 273 199 0.73 DOI 
03K-400 BT 128 130 1.02 1101 
03K-400 CG 90 69 0.77 1101 
03K-400 CG 53 69 1.30 [lo], assuming that prefetching is ineffective. 
03K-400 . LU 127 224 1.76 [lOI 
03K-400 LU 179 224 1.25 [lo], assuming a dedicated node and TLB misses to L2 cache. 
03K-400 SP 74 122 1.65 1101 
03K-400 SP 127 122 0.96 [lo], assuming a dedicated node. 
03K-400 F3D-shared 397 377 0.95 
03K-400 292 193 0.66 181 
03K-400 CTH 252 193 0.77 [8], assuming that prefetching is ineffective. 
SUN El0000 F3D-shared 225 180 0.80 
SUN El0000 CTH 187 97 0.52 [81 
SUN El0000 CTH 156 97 0.62 [S], assuming that prefetching is ineffective. 



System 

T3E-1200 
T3E-1200 
T3E-1200 
T3E-1200 
T3E-1200 
T3E-1200 
T3E-1200 
T3E-1200 
T3E-1200 
T3E-900 
T3E-900 
T3E-900 
T3E-900 
T3E-900 
T3E-900 
T3E-900 
T3E-900 
P2-66.7 
P2-66.7 
P2SC-120 
P2SC-120 
P2SC-120 
P2SC-120 
P2sC-120 
P2SC-120 

P2SC-135 

Table 3. A comparison of predicted results from ENVELOPE to measured results (continued). 

- 
Predicted Measured Measured 

Benchmark Speed Speed Source 
(MFLOPS) (MFLOPS) Predicted 

BT 156 67 0.43 151 
BT 54 67 1.24 [5], assuming poor use of prefetching. 
CG 92 10 0.11 151 
CG 32 10 0.31 [5], assuming poor USC of prefctching. 
LU 152 79 0.52 [51 
SP 91 50 0.55 151 
SP 49 50 1.02 [5], assuming poor USC of prefetching. 
F3D-distributed 127 57 0.45 [71 
F3D-distributed 47 57 1.21 [7], assuming poor use of prefetching. 
BT 138 58 0.42 151 
BT 52 58 1.12 [5], assuming poor use of prefetching. 
CG 81 11 0.14 151 
CG 30 11 0.37 [5], assuming poor use of prefetching. 
LU 137 66 0.48 [51 
SP 84 44 0.52 t51 
SP 47 44 0.94 [5], assuming poor use of prefetching. 
F3D-distributed 118 43 0.36 171 
CTH 86 63 0.73 181 
CTH 77 63 0.82 [S], assuming that prefetching is ineffective. 
Linpack 100 x 100 198 233 1.18 t31 
Linpack 100 x 100 198 233 1.18 131, TWEAKED input that the pipeline depth was short. 
BT 148 104 0.70 t51 
LU 126 97 0.77 151 
LU 144 97 0.67 151, assuming TLB misses to cache. 
SP 68 72 1.06 151 

. ___ _-^ --_ ?.I?- * -,-I r?- 1 Linpack 100 x 1UU 1 uv I LO3 1 l.LU 1 131 
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Table 3. A comparison of predicted results from ENVELOPE to measured results (continued). 

c .  

System 

I’2sC-160 
l’2SC-160 
P2SC-160 
P2SC-160 
I’2SC-160 
I’2SC-160 
P2SC-160 
P2SC-160 
P2SC-160 
POWER3-200 
POWER3-200 
POWER3-200 
POWER3-200 
POWER3-200 
POWER3-200 
POWER3-200 
POWER3-200 
POWER3-222 
POWER3-222 
POWER3-222 
POWER3-222 
POWER3-222 
POWER3-222 
POWER3-222 
POWER3-222 

Benchmark 

Linpack 100 x 100 
BT 
CG 
CG 
LU 
LU 
SP 
F3D-distributed 
F3D-distributed 
Linpack 100 x 100 
BT 
BT 
CG 
CG 
LU 
LU 
SP 
Linpack 100 x 100 
BT 
BT 
CG 
CG 
LU 
LU 
SP 

Predicted Measured 
Speed Speed 

(MFLOPS) (MFLOPS) 
256 315 
169 131 
112 31 

80 31 
138 129 
160 129 

73 92 
123 33 

92 33 
295 233 
147 108 
135 108 
86 44 
79 44 

152 147 
222 147 

94 84 
363 250 
215 105 

71 105 
136 74 
42 74 

139 141 
174 141 
66 77 

Measured 

Predicted 
1.23 
0.78 
0.28 
0.39 
0.93 
0.81 
1.26 
0.27 
0.36 
0.79 
0.73 
0.80 
0.51 
0.56 
0.97 
0.66 
0.89 
0.69 
0.49 
1.48 
0.54 
1.76 
1.01 
0.81 
1.17 

Source 

r31 
I51 
151 
[5], assuming poor use of prefetching. 
141 
[4], assuming TLB misses to cache. 
[51 
171 
[7], assuming poor use of prefetching. 
[ill 
[41 
[4], assuming poor use of prefetching. 
141 
[4], assuming poor use of prefetching. 
141 
[4], assuming a dedicated node and TLB misses to L2 cache. 
141 
t31 
[12] (the measured results are for the class A data set). 
[12], assuming poor use of prefetching. 
1131 
[13], assuming poor use of prefetching. 
[12] (the measured results are for the class A data set). 
[12], assuming a dedicated node and TLB misses to L2 cache. 
[12] (the measured results are for the class A data set). 



Table 3. A comparison of predicted results from ENVELOPE to measured results (continued). 

System Benchmark 

POWER3-375-Thin 
POWER3-375-Thin 
POWER3-375-Thin 
POWER3-375-Thin 
POWER3-375-Thin 
POWER3-375-Thin 
POWER3-375-Thin 
POWER3-375-Thin 
POWER3-375-Thin 
POWER3-375-High 
POWER3-375-High 
POWER3-375-High 
POWER3-375-High 
POWER3-375-High 
POWER3-375-High 
POWER3-375-High 
DS20-500 
LIS20-500 
DS20-500 
DS20-500 
D!520-500 
DS20-500 
DS20-500 
DS20-500 

Linpack 100 x 100 
BT 
BT 
CC 
CG 
LU 
LU 
SP 
SP 
Linpack 100 x 100 
CG- 
CG 
LU 
LU 
CTH 
CTH 
Linpack 100 x 100 
Linpack 100 x 100 
BT 
CG 
CG 
LU 
LU 
SP 

Predicted Measured 
speed Speed 

(MFLOI’S) (MFLOPS) 
357 426 

90 74 
90 74 
54 45 
54 45 
92 224 

238 224 
56 86 
79 86 

505 424 
110 56 

45 45 
129 288 
195 288 
409 272 
309 272 
336 440/270 
358 440/270 
204 206/174 
122 95/90 

47 95/90 
187 146/137 
211 146/137 
107 192/127 

Measured 

Predicted 
1.19 
0.82 
0.82 
0.83 
0.83 
2.43 
0.95 
1.54 
1.09 
0.84 
0.51 
1.24 
2.23 
1.53 
0.67 
0.88 

1.31/0.82 
1.23/0.75 
1.01/0.85 
0.78/0.74 
2.02/1.91 
0.78/0.73 
0.66/0.62 
1.79/1.19 

Source 

141, assuming poor use of prefetching. 
[41 
[4], assuming poor use of prefetching. 
]41 
[4], assuming a dedicated node and TLB misses to L2 cache. 
141 
141, assuming a dedicated node. 
1141 
t151 
[15], assuming poor use of prefetching. 
1151 
[15], assuming a dedicated node and TLB misses to L2 cache. 
k31 
[8], assuming that prefetching is ineffective. 
[3] (two significantly different values were reuorted). 
[3], assuming a dedicated system. 

1 

[16] (TRU64/Linux) class A data set. 
1161 (TRU64/Linux) class A data set. 
1161, assuming poor use of prefetching. 
[16] (TRU64/Linux) class A data set. 
1161, assuming TLB misses to L2 cache. 
[16] (TRU64/Linux) class A data set. 
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Table 3. A comparison of predicted results from ENVELOPE to measured results (continued). 

Predicted Measured Measured 
System Benchmark Speed Speed Source 

(MFLOPS) (MFLOPS) Predicted 
ES40-500 BT 204 194/175 0.95/0.86 [16] (TRU64/Linux) class A data set. 
ES40-500 CG 122 90/87 0.74/0.72 1161 (TRU64/Linux) class A data set. 
ES40-500 CG 47 90/87 1.91/1.85 [16], assuming poor use of prefetching. 
ESZO-500 LU 187 190/132 1.02/0.71 1161 (TFXJ64/Linux) class A data set. 
ES40-500 LU 211 190/132 0.90/0.63 [16], assuming TLB misses to L2 cache. 
ES40-500 SP 135 161/142 1.19/1.05 [16] (TRU64/Linux) class A data set. 
ES40-667 LlOO 430 561 1.30 131 
ES40-667 LlOO 466 561 1.20 131, assuming a dedicated system. 
ES40-667 BT 226 150 0.66 1171 
E%O-667 CG 137 110 0.80 1181 
ES40-667 CG 49 110 2.24 [ 181, assuming poor use of prefetching. 
E!+IO-667 LU 202 250 1.24 1171 
ES40-667 LU 231 250 1.08 1171, assuming TLB misses to L2 cache. 
E%O-667 SP 113 150 1.33 1171 
ES40-667 SP 127 150 1.18 1171, assuming a dedicated system. 
Pentium-II-450 Linpack 100 x 100 116 98 0.84 r31 
Pentium-II-450 BT 39 56 1.44 1191 
Pentium-II-450 CG 27 28 1.04 t191 
Pentium-II-450 CG 27 28 1.04 [19], assuming poor use of prefetching. 
Pentium-II-450 LU 50 100 2.00 [191 
Pentium-II-450 LU 102 100 0.98 [19], assuming a dedicated node and TLB misses to L2 cache. 
Pentium-II-450 SP 47 47 47 1191 
Pentium-III-733 BT 41 58 1.41 1191 
Pentium-III-733 CG 29 38 1.31 1191 
Pentium-111-733 CG 29 38 1.31 [19], assuming poor use of prefetching. 
Pentium-III-733 LU 53 106 2.00 t191 
Pentium-III-733 LU 116 106 0.91 [19], assuming a dedicated node and TLB misses to L2 cache. 
Pentium-III-733 SP 38 39 1.03 1191 



System 

HP 8000-180 
HP 8000-l 80 
HP 8000-180 
HP 8000-180 
HP 8000-180 
HP 8500440 
HP 8500440 
HP 8500-440 
HP 8500440 
I IP Superdome 
HP Superdome 
HP Superdome 

\lotes: 

Table 3. A comparison of predicted results from ENVELOPE to measured results (continued). 

Benchmark 

Linpack 100 x 100 
BT 
BT 
LU 
SP 
Linpack 100 x 100 
F3D-shared 
F3D-shared 
F3D-shared 
F3D-shared 
F3D-shared 
F3D-shared 

Predicted Measured 
Speed Speed 

(MFLOPS) (MFLOPS) 
234 156 
118 59 
34 59 

108 65 
77 56 

467 375 
507 311 
417 311 
380 311 
671 527 
580 527 
558 527 

Measured 

Predicted 

0.67 
0.50 
1.84 
0.61 
0.73 
0.80 
0.61 
0.75 
0.82 
0.79 
0.91 
0.94 

Source 

131 
t51 
[5], assuming poor use of prefetching. 
151 
t51 
131 

Assuming prefetching is 40% effective. 
Assuming prefetching is 30% effective. 

Assuming prefetching is 40% effective. 
Assuming prefetching is 30% effective. 

l The NAS benchmarks BT, CG, LU, and SI’ are for the class B data set using the MI’1 version of the code (NPB 2). 
l Some codes do not seem to lend themselves to benefiting from certain architectural features (e.g., prefetching and multiply-add [maddl instructions). In 

some cases, a second set of predicted values was calculated to see if turning off a particular feature would bring the prediction more in line with the 
measured value. 

l There has also been some confusion caused by multiple versions of the MI’1 NAS benchmarks. Over time, the optimization of these codes has improved 
(at least for some platforms). Depending on which version of code was used to collect the Perfex data and which version was used for the measured 
data, the results can vary by more than what would be expected. 

l In estimating the working sizes of potential working sets, we had to make some guesses. Working sets that fit in the Ll cache are known to be no more 
than 32 kB in size (the size of the Ll cache on the machines being used to run Perfex). However, we estimate the size of the working set to be 12 kB as a 
matter of policy. 

l Similarly, the size of working sets that fit in the L2 cache, but not the Ll, are known to be no more than the size of the L2 (l-8 MB, depending on the 
system being used). We choose to estimate the size to be 1 MB. However, in some cases, we got significantly better agreement by decreasing the size to 
what would fit in the cache of a particular machine (e.g., 100 kB for the 128-kB cache of the P2SC or 80 kB for the 96-kB cache of the T3E). The 
justification for this is that these numbers are more guesses than estimates and therefore should be adjusted to fit the actual data. In most cases where 
the adjustments were made, the need a’hd appropriateness was immediately apparent since the difference in the predicted level of performance might 
vary by as much as a factor of 10. 
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l The available memory bandwidth and memory latency-for a shared memory system can be difficult to get right. If the measurements were made using 
a single processor on a dedicated system, then the measured level of performance might be artificially inflated (the job can use more than its fair share 
of the memory bandwidth for prefetching. Similarly, if the job can be “locked” onto a single processor of a system with nonuniform memory access 
times, then the latency might be significantly less than would be otherwise measured (e.g., on the SGI 02K, this can affect performance by up to a factor 
of 3). 

l F3D refers to an implicit CFD code out of NASA Ames that has been modified by the author to run efficiently on shared memory cache-based 
architectures such as the SGI Origin 2000. A second version of the code was created by Marek Behr, formerly of the U.S. Army High Performance 
Computing Research Center, and was optimized to run on distributed memory platforms. The shared memory version of F3D uses the native (pre 
OpenMP) compiler directives to parallelize the code, while the distributed memory version of F3D uses SHMEM calls on systems that support them 
(e.g., the Cray T3D, Cray T3E, and the SGI Origin 2000) and MPI for other systems. The performance of the shared memory version of the code was 
measured for single processor runs. The performance of the distributed memory version of the code was measured using eight processor runs, which, 
in some cases, might result in the underestimation of the single processor performance. Unfortunately, memory limitations make it difficult to run this 
version on a single processor. The test-case was a l-million grid point projectile (three zones with turbulence turned on). 

l CTH is a CSM code out of the DOE running. The test case and results were supplied by Steve Schraml of ARL. 



Table 4. A sample run of the program that uses Perfex data to suggest the input 
parameters for use with the program ENVELOPE. 

$velope.perfex-guide 
This program is designed to request a limited amount of information (some hardware and some from 
running PERFEX or a similar tool) and then to output a recommended set of input for some of the 
input values requested by the program envelope. This program makes heavy use of heuristics, so in 
no way is it as accurate as a line-by-line analysis of the source code. However, in many cases, it will be 
good enough. One point of caution: The values for “the scratch array memory footprint” and “the 
block size” are guesses. They could be larger than these guesses (up to the limits of the size of the Ll 
and I.2 cache, respectively). It is even possible that work assigned to large global blocked arrays 
represents a second working set that should be assigned to the scratch arrays or vice-versa. The 
rationale for doing things the way they have been done is that it supports two distinct working set 
sizes within the constraints of the ENVELOPE program. 
===========p================================================== 
We will start off by trying to estimate the number of floating point MADD, ADD, and MULTIPLY 
instructions. This is an imperfect process. In particular, it is sometimes difficult to know what to call a 
MADD, since the SGl hardware can efficiently process independent ADDS and MULTIPLIES in the 
same cycle. In theory, this can result in up to a factor of 2 difference between the predicted and 
measured levels of performance. The only solution to this problem is to compare the prediction for the 
system used to run PERFEX, with the measured number, and to then fine-tune the numbers 
accordingly. 

This section of the program can work in three ways: 
1) Skip this section entirely. 
2) Combine Perfex data with an a priori knowledge of the total number of floating point operations to 
estimate things. 
NOTE: The a priori knowledge can be easily gamed by measuring the number of floating point 
instructions with MADDS turned off. On the SGI Origin, this is done by compiling with the -mips3 
option. 
3) Combine Perfex data with numbers from the Cray Hardware Performance Monitor to estimate 
things. 

What do you want to do (enter 1,2, or 3)? 
2 
What is the total number of floating point operations? 
5.8937688ElO 
What is the number of Graduated Floating Point instructions (from Perfex)? 
27917089584 
For the purpose of running ENVELOPE, it is estimated that there are: 
29468844E+lO the number of madds 
0.0000000E+00 the number multiplies, etc. 
0.0000000E+00 the number of adds, etc. 
NOTE: Given the input, it is generally impossible to precisely know the ratio between ADD and 
MULTIPLY instructions, but for the purpose of this program, it doesn’t matter. 

Unless you know the memory footprint (e.g., use the number from TOP for RSS), you might want to 
assume 1024 MB. 

Unless you know the size of the group, assume 1. 

Unless you know the density of the group, assume 1. 

Unless the code does a lot of integer operations, other than for address calculation, assume 0.0. 
====================================-========================== 
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Table 4. A sample run of the program that uses Perfex data to suggest the input 
parameters for use with the program ENVELOPE (continued). 

What is the Iine size for the Ll cache in bytes (32 bytes on the 02K)? 
32 
What is the Iine size for the L2 cache in bytes (128 bytes on the 02K)? 
128 
What is the size of a page of memory (for an Origin 2000 or Origin 3000, use 16 kB) in kB? 
16 
What is the size of the data item in bytes (usuaIIy 8)? 
8 
How many LOADS graduated (from Perfex)? 
84240901392 
How many STORES graduated (from Perfex)? 
1128365872 
What is the Ll Miss rate (from Perfex)? 
3672073573552 
What is the I.2 Miss rate (from Perfex)? 
2598239936 
What is the TLB Miss rate (from Perfex)? 
22215984 

Additional values to use as input for ENVELOPE are as follows. 
128.0000 cache Iine size in bytes 
16.OOOOO page size in kB 
627.6436 the amount of data being loaded into the 

proc. In GB 
8.406981 the amount of data being stored by the 

proc. In GB 

l.OOOOOO Used RLSVDEDICATED 
O.OOOOOOOE+OO Percentage ISVDEDICATED 
l.oooooO Used RSSVDEDICATED 
0.OOOOOO0E+OO Percentage SSVDEDICATED 
O.OOOOOOOE+OO Percentage SVMADDS 
O.OOOOOO0E+OO Percentage SVMULTIPLIES 
O.OOOOOO0E+OO Percentage SVIOPS 
O.OOOOOOOE+OO Percentage SSVDEDICATED 
0.00OOOOOE+OO Percentage SSVDEDICATED 
1.oooo00 Used RLSVGENERAL 

0.00OOOOOE+OO Percentage LSVGENERAL 
1 .oooooo Used RSWGENERAL 

0.0000000E+00 Percentage SSVGENERAL 
1.000000 Used RLSADEDICATED 

0.0000000E+00 Percentage ISADEDICATED 
1 .oooooo Used RSSADEDICATED 

0.0000000E+00 Percentage SADEDICATBD 
0.0000000E+00 Percentage SAMADDS 
0.0000000E+OO Percentage SAMULTIPLIES 
0.0000000E+00 Percentage SAADDS 
0.0000000E+00 Percentage SAIOPS 
1.000000 Used RLSAGENERAL 

0.0000000E+00 Percentage LSAGENERAL 
1 .oooooo Used RSSAGENERAL 

0.0000000E+00 Percentage SSAGENERAL 
1.1700000E-02 the scratch array memory footprint 
1.000000 Used CLGB 

0.0000000E+00 Percentage LGB 
1.000000 Used CSGB 

0.0000000E+00 Percentage SGB 
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Table 4. A sample run of the program that uses Perfex data to suggest the input 
parameters for use with the program ENVELOPE (continued). 

0.0000000E+00 Percentage GBMADDS 
0.0000000E+00 Percentage GBMIJLTIPLIES 
0.0000000E+00 Percentage GBADDS 
0.0000000E+OO Percentage GBIOPS 
-1.000000 the block size 
1 .oooooo Used CLGN 
22634468E-03 Percentage LGN 
1 .oooooo Used CSGN 
2.2634468E-03 Percentage SGN 
2.2634468B03 Percentage GNMADDS 
2.2634468E-03 Percentage GNMULTIPLIES 
2.2634468E-03 Percentage GNADDS 
2.2634468E-03 Percentage GNIOPS 
2.055018 Used CLGl 
99.99773 Percentage LGl 
2.055018 Used CSGl 
99.99773 Percentage SGl 
99.99773 Percentage GlMADDS 
99.99773 Percentage GlMULTIPLIES 
99.99773 Percentage GlADDS 
99.99773 Percentave GlIOPS 
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Glossary 

ARL U.S. Army Research Laboratory 

BLAS Basic Linear Algebra Subprograms 

CFD Computational Fluid Dynamics 

CISC Complicated Instruction Set Computer - an approach to 
processor design that assumes that the best way to get 
good performance out of a system is to provide 
instructions that are designed to implement key 
constructs (e.g., loops) from high-level languages 

CSM Computational Structural Mechanics 

CPU Central Processing Unit 

GFLOPS Billion Floating Point Operations per Second 

High-Level Languages Computer languages that are designed to be relatively 
easy for the programmer to read and write. Examples of 
this type of language are FORTRAN, COBOL, C, etc. 

kB Thousand Bytes 

Low-Level Languages Computer languages that are designed to reflect the 
actual instruction set of a particular computer. In 
general, the lowest level language is known as Machine 
Code. Just slightly above Machine Code is a family of 
languages collectively known as Assembly Code. 

MB 

MELOPS 

MHz 

Ml’1 

MSRC 

NAS 

PAP1 

Million Bytes 

Million Floating Point Operations per Second 

Million Hertz (cycles/second) 

Message-Passing Interface 

Major Shared Resource Center 

Numerical Aerospace Simulation- a division of the 
Information Sciences and Technology Directorate at 
NASA Ames Research Center, Moffett Field, CA 

Performance Application Programming Interface 
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RISC 

SMP 

SPEC 

Reduced Instruction Set Computer - an approach to 
processor design that argues that the best way to get 
good performance out of a system is to eliminate the 
Micro Code that CISC systems use to implement most of 
their instructions. Instead, all of the instructions will be 
directly implemented in hardware. This places obvious 
limits on the complexity of the instruction set, which is 
why the complexity had to be reduced. 

Symmetric Multiprocessor 

Standard Performance Evaluation Corporation - a 
company formed to create industry standard 
benchmarks (mostly for desktop systems) 
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